Scaling up classification rule induction through parallel processing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling up classification rule induction through parallel processing

The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important...

متن کامل

P-Prism: A Computationally Efficient Approach to Scaling up Classification Rule Induction

Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing ...

متن کامل

PMCRI: A Parallel Modular Classification Rule Induction Framework

In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not...

متن کامل

Scaling Parallel Rule-Based Reasoning

Using semantic technologies the materialization of implicit given facts that can be derived from a dataset is an important task performed by a reasoner. With respect to the answering time for queries and the growing amount of available data, scaleable solutions that are able to process large datasets are needed. In previous work we described a rulebased reasoner implementation that uses massive...

متن کامل

Rule Induction through Integrated Symbolic and Subsymbolic Processing

We describe a neural network, called RufeNet, that learns explicit, symbolic condition-action rules in a formal string manipulation domain. RuleNet discovers functional categories over elements of the domain, and, at various points during learning, extracts rules that operate on these categories. The rules are then injected back into RuleNet and training continues, in a process called iterative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Knowledge Engineering Review

سال: 2012

ISSN: 0269-8889,1469-8005

DOI: 10.1017/s0269888912000355